Project A5 (Completed): Heat transfer in polymer nanocomposites

A multiscale approach to heat transfer in soft matter will be developed. In particular, coarse-grained models of polymer nanocomposites including graphite flakes will be built and employed to obtain and characterize relaxed structures of such materials. Atomistic details will be reinserted in these structures and heat transfer will be characterized at this level of description to obtain reference data. Then, the question will be addressed how the coarse-grained models have to be modified in order to characterize heat transport in the nanocomposites directly at the coarsened level of description.

This project has ended in June 2018.

Communication: Is a coarse-grained model for water sufficient to compute Kapitza conductance on non-polar surfaces?
Vikram Reddy Ardham, Frédéric Leroy
The Journal of Chemical Physics 147 (15), 151102 (2017)
see publication


Thermodynamics of atomistic and coarse-grained models of water on nonpolar surfaces
Vikram Reddy Ardham, Frédéric Leroy
The Journal of Chemical Physics 147 (7), 074702 (2017)
see publication


Revisiting the droplet simulation approach to derive force-field parameters for water on molybdenum disulfide from wetting angle measurements
Frédéric Leroy
The Journal of Chemical Physics 145 (16), 164705 (2016)
see publication


Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method
Vikram Reddy Ardham, Gregor Deichmann, Nico F. A. van der Vegt, Frédéric Leroy
The Journal of Chemical Physics 143 (24), 243135 (2015)
see publication


Parametrizing Nonbonded Interactions from Wetting Experiments via the Work of Adhesion: Example of Water on Graphene Surfaces
Frédéric Leroy, Shengyuan Liu, Jianguo Zhang
The Journal of Physical Chemistry C119 (51), 28470-28481 (2015)
see publication