Search Results

Search Results for: 10
Search-Engine: Internal WordPress search
Site-Search: Only results of this website will be shown.
Results: 39

Project A2: Dynamically consistent coarse-grained models The aim of this project is to develop methods that endow chemically-specific coarse-grained (CG) simulation models with consistent dynamical properties. To this end, CG models with conservative and dissipative interactions are derived from a higher-resolution model using bottom-up coarse-graining methods that retain a highmlevel of chemical specificity. In the first two funding phases, we have developed methods for deriving Markovian and non-Markovian CG models that successfully represent the dynamics of molecular liquids, polymer solutions, and star-polymer melts on diffusive time scales. The Markovian method uses a dissipative particle dynamics (DPD) thermostat that is parameterised by means of a bottom-up approach using the microscopic dynamics. While successful in CG simulations of molecular liquids where only the friction due to the relaxation of atomic vibrations needs to be accounted for, it fails to describe the dynamics of polymer melts and the dynamics of small molecules in […]

Project A6: Coarse-grained models for dynamically asymmetric liquid mixtures under non-equilibrium conditions he main goal of this project is to gain better insight into the mapping of time-dependent properties of complex molecular systems, when studied using multiscale simulations. While the mapping of length scales is inherently defined by the coarse-graining procedure, the mapping of dynamic processes involves a complex combination of factors due to both the removal of degrees of freedom as well as approximations made in determining the coarse-grained (CG) interactions based on a reference all-atom (AA) model. As a consequence, the development of dynamically-consistent CG models is particularly challenging when various dynamic processes on different time scales coexist. To investigate these issues, we have focused on two important classes of systems, liquid crystals (LCs) and ionic liquids (ILs), which pair technological relevance with appropriate dynamics, and still show well defined modes of motion despite their significant complexity. In […]

Projects B: Particle based coarse-graining and mixed resolution schemes • B1: Inverse problems in coarse-grained particle simulations • B2: Many-body effects and optimized mapping schemes for systematic coarse-graining • B3: Coarse-graining of solvent effects in force-probe molecular dynamics simulations • B4: Equilibrium and non-equilibrium processes in open systems via adaptive resolution simulations • B5: Multi-resolution methods including quantum chemistry, force fields, and hybrid particle-field schemes • B6: Topological validation of coarse-grained polymer models • B7: Machine learning for multiscale simulations • B8 (N): Hydrodynamic Simulation of Passive and Active Janus Particles

Projects – A: Dynamics • A2: Dynamically consistent coarse-grained models • A3: Coarse-graining frequency-dependent phenomena and memory in colloidal systems • A4 (E): Understanding Water Relaxation Dynamics at Interfaces • A5 (E): Heat transfer in polymer nanocomposites • A6: Dynamic heterogeneities in coarse-grained and fine-grained models of liquid crystals and ionic liquids • A7: Dynamical coarse-graining for non-equilibrium steady states with stochastic dynamics • A8: Roberto – Improved dynamics in self-consistent field molecular dynamics simulations of polymers • A9: Coarse grained nonequilibrium dynamics of active soft matter • A10 (N): Population control of multiple walker simulations via a birth/death process

Project B1: Inverse problems in coarse-grained particle simulations Coarse-graining (CG) methods are an indispensable tool in computational materials science, but the associated upscaling and downscaling processes have to be designed with great care to allow for a proper interpretation of the computed results. Each of these interscale transfers comes along with important inverse problems to be resolved, most of which are ill-posed, or ill-conditioned at the very least. The purpose of this project is to apply rigorous techniques from the mathematical field of inverse and ill-posed problems to attack these fundamental problems in the multiscale simulation of soft matter, and to provide a mathematically rigorous foundation of existing and/or new upscaling processes. n the first two funding phases we have developed the mathematical foundation for a rigorous analysis of iterative methods that are currently being used for the computation of effective pair potentials of sophisticated CG models. We have used […]

Projects Dynamics • A2: Dynamically consistent coarse-grained models • A3: Coarse-graining frequency-dependent phenomena and memory in colloidal systems • A4 (E): Understanding Water Relaxation Dynamics at Interfaces • A5 (E): Heat transfer in polymer nanocomposites • A6: Dynamic heterogeneities in coarse-grained and fine-grained models of liquid crystals and ionic liquids • A7: Dynamical coarse-graining for non-equilibrium steady states with stochastic dynamics • A8: Roberto – Improved dynamics in self-consistent field molecular dynamics simulations of polymers • A9: Coarse grained nonequilibrium dynamics of active soft matter • A10 (N): Population control of multiple walker simulations via a birth/death process Particle based coarse-graining and mixed resolution schemes • B1: Inverse problems in coarse-grained particle simulations • B2: Many-body effects and optimized mapping schemes for systematic coarse-graining • B3: Coarse-graining of solvent effects in force-probe molecular dynamics simulations • B4: Equilibrium and non-equilibrium processes in open systems via adaptive resolution simulations • B5: […]

Integrated research training group (IRTG) The integrated research training group (IRTG) of the TRR 146 provides a joint structured graduate education in the area of Computational Materials Science for the graduate students and young postdocs in the TRR 146 as well as other interested candidates working in related areas. The goals of the IRTG are threefold: 1) to provide students with the interdisciplinary background required for the research activities in the TRR 146, and to prepare them for a possible career in the area of theoretical Materials Sciences 2) to ensure common standards in the education of all graduate students in the TRR 146 by means of a well structured supervision and management program, 3) to establish and strengthen links within the TRR 146 already at the level of graduate students and young postdoctoral researchers. Special emphasis is placed on promoting exchange between groups within and outside of the TRR […]

Publications List of all publications sorted by year • 2023 • 2022 • 2021 • 2020 • 2019 • 2018 • 2017 • 2016 • 2015 • before 2015 2023 – Publications 2022 – Publications 2021 – Publications 2020 – Publications 2019 – Publications 2018 – Publications 2017 – Publications 2016 – Publications 2015 – Publications pre 2015 – Publications

TRR 146: Multiscale Simulation Methods for Soft Matter Systems Multiscale modeling is a central topic in theoretical condensed matter physics and materials science. One prominent class of materials, whose properties can rarely be understood on one length scale and one time scale alone, is soft matter. The properties of soft materials are determined by an intricate interplay of energy and entropy, and minute changes of molecular interactions may lead to massive changes of the system’s macroscopic properties. In our collaborative research center (CRC TRR 146), we plan to tackle some of the most pressing problems in multiscale modeling in a joint effort of physicists, chemists, applied mathematicians, and computer scientists. The TRR 146 receives funding from the german science foundation (DFG) since October 2014. We address three major challenges: (A) Dynamics In the past, multiscale coarse-graining approaches have to a large extent focused on static equilibrium properties. However, a thorough […]