Search Results

Search Results for: 42
Search-Engine: Internal WordPress search
Site-Search: Only results of this website will be shown.
Results: 34

Research stay abroad This activity is meant to provide further advanced training and to foster the internationalization of the education of the PhD students of the CRC-TR, as well as opening opportunities for the corresponding CRC-TR subproject to establish new links and collaborations abroad. Students of the IRTG are strongly encouraged to spend up to 6 months in a renowned lab abroad, where they will have the possibility to acquire more independence, learn new skills, create/strengthen collaborations and expand their personal scientific network. The research stay abroad is fully funded by the IRTG. The choice of the external lab is made individually by the students together with their advisor.

Student initiatives The IRTG encourages doctoral students to pursue own ideas, take own initiatives, and to prepare and submit corresponding short proposals. This aims to foster student’s independence and scientific vision of their field of research, and also help them to gain first experiences with preparing proposals in order to obtain support for their research. Two specific sets of student initiatives described below are supported explicitly. Applications for research assistants The IRTG encourages the doctoral students to apply for undergraduate student research assistants. This will help them to develop their supervision skills. Applications to fund an undergraduate student research assistant in connection with a project are considered by the IRTG once per year. Groups of students and postdoctoral researchers need to prepare such projects on topics of shared interest. Each project will be presented to the assembly of students and discussed, e.g. after one of the students’ seminars. In addition […]

Short term doctoral fellowships To allow for flexibility in the recruitment process, a pool of 31 months of short-term doctoral fellowships per year for national and international PhD students has been established. Each fellowship provides funding for a doctoral student for up to 1 year maximum. The doctoral fellowships will serve two purposes: First, they will allow PIs to accept applications of excellent candidates even if a position is not available immediately. Second, they will be used to promote international exchange. Graduate students from abroad can get a fellowship to visit the CRC-TR for a period of up to one year.

Project C7: Dense active suspensions in the chaotic regime Active matter has become a quickly evolving field spanning from biology and physics to chemistry and engineering. Its defining property is the directed motion—translational, rotational, or both—of its constituents. This directed motion requires the steady input of free energy. Freed from the constraints of thermal equilibrium, active matter exhibits a wide range of novel phenomena; on the level of its single constituents up to emergent many-body collective and dynamic behavior. Extensively studied have been the aggregation of active particles into clusters, swarms, and other highly collective and dynamics states; but also spontaneous flow states where sufficiently high activity triggers the transition from a quiescent to a flowing fluid. At high densities, chaotic behavior has been reported in suspensions of bacteria and in numerical simulations. The aim of this project is to develop a comprehensive multiscale framework that bridges the properties of […]

Admission and Qualification Admission Students funded directly by the TRR146 are automatically admitted to the IRTG. External students can apply for admission by presenting a CV and a one-page project plan to the TRR146 Office where they explain how their project fits TRR146 topics. The application will be evaluated by the PIs of the IRTG. We anticipate that workshop and conference travel funding for admitted external students will be limited and accessible only upon application. Qualification plan The most important training element of the IRTG is the research on the project, assisted by efficient supervision . In addition, the integrated training group serves as a mean to provide students and young postdoctoral researchers with the training required for working within the CRC-TR. The training is made necessary by the interdisciplinary nature of the CRC-TR, where chemistry, physics, mathematics and computer science are intertwined in a non-standard combination, which is usually […]

IRTG – Activities The IRTG fosters its objectives through a series of activities (see items below), which the members can attend/exploit in relation to their needs. Participation to the activities of the IRTG should not require more than 15% of a student’s working time. The activities are coordinated by the coordination office of the CRC-TR together with the elected student/postdoc speakers.

IRTG Organization Currently, the student/postdoc speakers are • Rebecca Steiner (further information) • Fabio Frommer (further information) • Moritz Mathes (further information) • Maarten Brems (further information)

Project A2: Dynamically consistent coarse-grained models The aim of this project is to develop methods that endow chemically-specific coarse-grained (CG) simulation models with consistent dynamical properties. To this end, CG models with conservative and dissipative interactions are derived from a higher-resolution model using bottom-up coarse-graining methods that retain a highmlevel of chemical specificity. In the first two funding phases, we have developed methods for deriving Markovian and non-Markovian CG models that successfully represent the dynamics of molecular liquids, polymer solutions, and star-polymer melts on diffusive time scales. The Markovian method uses a dissipative particle dynamics (DPD) thermostat that is parameterised by means of a bottom-up approach using the microscopic dynamics. While successful in CG simulations of molecular liquids where only the friction due to the relaxation of atomic vibrations needs to be accounted for, it fails to describe the dynamics of polymer melts and the dynamics of small molecules in […]

Project A5 (Completed): Heat transfer in polymer nanocomposites A multiscale approach to heat transfer in soft matter will be developed. In particular, coarse-grained models of polymer nanocomposites including graphite flakes will be built and employed to obtain and characterize relaxed structures of such materials. Atomistic details will be reinserted in these structures and heat transfer will be characterized at this level of description to obtain reference data. Then, the question will be addressed how the coarse-grained models have to be modified in order to characterize heat transport in the nanocomposites directly at the coarsened level of description. This project has ended in June 2018.

Project A6: Coarse-grained models for dynamically asymmetric liquid mixtures under non-equilibrium conditions he main goal of this project is to gain better insight into the mapping of time-dependent properties of complex molecular systems, when studied using multiscale simulations. While the mapping of length scales is inherently defined by the coarse-graining procedure, the mapping of dynamic processes involves a complex combination of factors due to both the removal of degrees of freedom as well as approximations made in determining the coarse-grained (CG) interactions based on a reference all-atom (AA) model. As a consequence, the development of dynamically-consistent CG models is particularly challenging when various dynamic processes on different time scales coexist. To investigate these issues, we have focused on two important classes of systems, liquid crystals (LCs) and ionic liquids (ILs), which pair technological relevance with appropriate dynamics, and still show well defined modes of motion despite their significant complexity. In […]